Line 9: | Line 9: | ||
The Key to approach this problem is: What is <math> {e^{j2t} + e^{-j2t} \over 2} </math>? | The Key to approach this problem is: What is <math> {e^{j2t} + e^{-j2t} \over 2} </math>? | ||
<br> | <br> | ||
+ | (1) <math> \cos 2t\ = {e^{j2t} + e^{-j2t} \over 2} </math> by Euler's Formalas.<br> |
Revision as of 06:05, 19 September 2008
Provided that:
(1) $ e^{j2t}\ $ ----------> System ----------> $ te^{-2jt}\ $
(2) $ e^{-j2t}\ $----------> System ----------> $ te^{2jt}\ $
(3) The System is Linear.
The following should hold true:
$ e^{j2t} + e^{-j2t}\ $ ----------> System -----------> $ te^{-2jt} + te^{2jt}\ $
The Key to approach this problem is: What is $ {e^{j2t} + e^{-j2t} \over 2} $?
(1) $ \cos 2t\ = {e^{j2t} + e^{-j2t} \over 2} $ by Euler's Formalas.