(Can Eve decrypt the message without finding the inverse of the secret matrix?)
(Can Eve decrypt the message without finding the inverse of the secret matrix?)
Line 35: Line 35:
  
 
A=<math>\left[ \begin{matrix}2 & 23 & 3 \end{matrix} \right]</math> * B'
 
A=<math>\left[ \begin{matrix}2 & 23 & 3 \end{matrix} \right]</math> * B'
 +
  
 
A=<math>\left[ \begin{matrix}2 & 23 & 3 \end{matrix} \right]</math>
 
A=<math>\left[ \begin{matrix}2 & 23 & 3 \end{matrix} \right]</math>

Revision as of 12:34, 19 September 2008

Application of linearity

How can Bob decrypt the message?

Assuming that Matrix A is what Alice wants to say, and matix B is a 3-by-3 matrix to encrypt Alice's message, and matrix C is the encoded messange.

It can be expressed A*B=C.

In order to find A, Bob needs to find the inverse matrix of B.

A*B*B`= C*B`, A*I=C*B'

After that, he needs to calculate C*B`. By finding its corresponding order in the alphabet, He can figure our what she wants to say.

Can Eve decrypt the message without finding the inverse of the secret matrix?

No, There is no way to decrypt the message without finding the inverse of the secret matirx.

== What is the decrypted message corresponding to (2, 23, 3)?

A*B=C

A'*A*B=A*C, I*B=A'*C, B=A'*C

A= $ \left[ \begin{matrix}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{matrix} \right] $


C= $ \left[ \begin{matrix}1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{matrix} \right] $


B = $ \left[ \begin{matrix}-2/3 & 0 & 4 \\ 0 & 1 & 0 \\ 2/3 & 0 & -1\end{matrix} \right] $


A=$ \left[ \begin{matrix}2 & 23 & 3 \end{matrix} \right] $ * B'


A=$ \left[ \begin{matrix}2 & 23 & 3 \end{matrix} \right] $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett