(The basics of linearity)
(The basics of linearity)
Line 14: Line 14:
  
 
<math>1/2 e^{(-2jt)}</math> --->[system]---><math> 1/2 te^{(2jt)}</math>
 
<math>1/2 e^{(-2jt)}</math> --->[system]---><math> 1/2 te^{(2jt)}</math>
 +
 +
<math> 1/2 te^{(-2jt)} + 1/2 te^{(2jt)}  = {e^{jt}\} ={te^{2jt} + te^{-2jt} \over 2 </math>

Revision as of 05:19, 19 September 2008

The basics of linearity

$ e^{(2jt)} $ --->[system]--->$ te^{(-2jt)} $

$ e^{(-2jt)} $ --->[system]--->$ te^{(2jt)} $

$ \cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2} $

$ \cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2} $

$ cos 2t = {e^{2jt} \over 2} + {e^{-2jt} \over 2} $

$ 1/2 e^{(2jt)} $ --->[system]--->$ 1/2 te^{(-2jt)} $

$ 1/2 e^{(-2jt)} $ --->[system]--->$ 1/2 te^{(2jt)} $

$ 1/2 te^{(-2jt)} + 1/2 te^{(2jt)} = {e^{jt}\} ={te^{2jt} + te^{-2jt} \over 2 $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva