(The basics of linearity)
(The basics of linearity)
Line 8: Line 8:
  
 
<math>\cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2}</math>
 
<math>\cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2}</math>
 +
 +
<math>\cos 2t = e^{2jt}/2 + e^{-2jt}/2 </math>

Revision as of 05:15, 19 September 2008

The basics of linearity

$ e^{(2jt)} $ --->[system]--->$ te^{(-2jt)} $

$ e^{(-2jt)} $ --->[system]--->$ te^{(2jt)} $

$ \cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2} $

$ \cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2} $

$ \cos 2t = e^{2jt}/2 + e^{-2jt}/2 $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics