(The basics of linearity)
(The basics of linearity)
Line 7: Line 7:
 
<math>\cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2}</math>
 
<math>\cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2}</math>
  
<math>\cos 2t = \mathrm{Re}\{e^{ix}\} ={e^{2jt} + e^{-2jt} \over 2}</math>
+
<math>\cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2}</math>

Revision as of 05:09, 19 September 2008

The basics of linearity

$ e^{(2jt)} $ --->[system]--->$ te^{(-2jt)} $

$ e^{(-2jt)} $ --->[system]--->$ te^{(2jt)} $

$ \cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2} $

$ \cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva