(Time Invariance)
 
Line 1: Line 1:
 
==Time Invariance==
 
==Time Invariance==
 
A system is called "'''time invariant'''" if for any input signal x(t) in continuous time or x[n] in discrete time and for any time <math>t_0\in{\mathbb R}</math> for continuous time or <math>n_0\in{\mathbb N}</math>, The response to the shifted input <math>x(t-t_{0})</math> or <math>x[n-n_{0}]</math> is the shifted output <math>y(t-t_{0})</math> or <math>y[n-n_{0}]</math>
 
A system is called "'''time invariant'''" if for any input signal x(t) in continuous time or x[n] in discrete time and for any time <math>t_0\in{\mathbb R}</math> for continuous time or <math>n_0\in{\mathbb N}</math>, The response to the shifted input <math>x(t-t_{0})</math> or <math>x[n-n_{0}]</math> is the shifted output <math>y(t-t_{0})</math> or <math>y[n-n_{0}]</math>
 +
 +
<math>x(t)\rightarrow system\rightarrow time delay\rightarrow y(t-t_{0})</math>
 +
 +
<math>x(t)\rightarrow time delay\rightarrow system\rightarrow y(t-t_{0})</math>
 +
 +
==Time Variant==
 +
A system is called "'''time variant'''" if for any input signal x(t) in continuous time or x[n] in discrete time and for any time <math>t_0\in{\mathbb R}</math> for continuous time or <math>n_0\in{\mathbb N}</math>, The response to the shifted input <math>x(t-t_{0})</math> or <math>x[n-n_{0}]</math> is not the shifted output <math>y(t-t_{0})</math> or <math>y[n-n_{0}]</math>
 +
 +
<math>x(t)\rightarrow system\rightarrow time delay\rightarrow y(t-t_{0})</math>
 +
 +
<math>x(t)\rightarrow time delay\rightarrow system\rightarrow z(t)</math>

Latest revision as of 17:59, 18 September 2008

Time Invariance

A system is called "time invariant" if for any input signal x(t) in continuous time or x[n] in discrete time and for any time $ t_0\in{\mathbb R} $ for continuous time or $ n_0\in{\mathbb N} $, The response to the shifted input $ x(t-t_{0}) $ or $ x[n-n_{0}] $ is the shifted output $ y(t-t_{0}) $ or $ y[n-n_{0}] $

$ x(t)\rightarrow system\rightarrow time delay\rightarrow y(t-t_{0}) $

$ x(t)\rightarrow time delay\rightarrow system\rightarrow y(t-t_{0}) $

Time Variant

A system is called "time variant" if for any input signal x(t) in continuous time or x[n] in discrete time and for any time $ t_0\in{\mathbb R} $ for continuous time or $ n_0\in{\mathbb N} $, The response to the shifted input $ x(t-t_{0}) $ or $ x[n-n_{0}] $ is not the shifted output $ y(t-t_{0}) $ or $ y[n-n_{0}] $

$ x(t)\rightarrow system\rightarrow time delay\rightarrow y(t-t_{0}) $

$ x(t)\rightarrow time delay\rightarrow system\rightarrow z(t) $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison