Line 4: Line 4:
 
=><math>\cos(2t)</math> --> system  
 
=><math>\cos(2t)</math> --> system  
 
=<math>\frac{e^{2jt}+e^{-2jt}}{2}</math> --> system<br>  
 
=<math>\frac{e^{2jt}+e^{-2jt}}{2}</math> --> system<br>  
=<math>\frac{1}{2}(e^{2jt}+e^{-2jt})</math> -->system
+
=<math>\frac{1}{2}(e^{2jt}+e^{-2jt})</math> -->system<br>
 +
=<math>\frac{1}{2}e^{2jt}-->system +\frac{1}{2}e^{-2jt}-->system <br>
 +
=<math>\frac{1}{2}te^{-2jt} +\frac{1}{2}te^{2jt}<br>
 +
=<math>\frac{1}{2}t(e^{-2jt} +e^{2jt})<br>
 +
=<math>\frac{1}{2}t\cos(2t)<br>

Revision as of 15:51, 18 September 2008

$ e^{2jt} --> system --> te^{-2jt} $
$ e^{-2jt} --> system --> te^{2jt} $

=>$ \cos(2t) $ --> system =$ \frac{e^{2jt}+e^{-2jt}}{2} $ --> system
=$ \frac{1}{2}(e^{2jt}+e^{-2jt}) $ -->system
=$ \frac{1}{2}e^{2jt}-->system +\frac{1}{2}e^{-2jt}-->system <br> =<math>\frac{1}{2}te^{-2jt} +\frac{1}{2}te^{2jt}<br> =<math>\frac{1}{2}t(e^{-2jt} +e^{2jt})<br> =<math>\frac{1}{2}t\cos(2t)<br> $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett