(New page: <math>e^2jt = te^(-2jt)</math> <br> <math>e^2jt = te^(-2jt)</math> <br> =><math>\cos(2t)=\frac{e^{2jt}+e^{-2jt}}{2}</math>) |
|||
Line 2: | Line 2: | ||
<math>e^2jt = te^(-2jt)</math> <br> | <math>e^2jt = te^(-2jt)</math> <br> | ||
− | =><math>\cos(2t)=\frac{e^ | + | =><math>\cos(2t)=\frac{e^2jt+e^(-2jt)}{2}</math><br> |
+ | =<math>\frac{1}{2} |
Revision as of 15:46, 18 September 2008
$ e^2jt = te^(-2jt) $
$ e^2jt = te^(-2jt) $
=>$ \cos(2t)=\frac{e^2jt+e^(-2jt)}{2} $
=$ \frac{1}{2} $