(New page: <math>e^2jt = te^(-2jt)</math> <br> <math>e^2jt = te^(-2jt)</math> <br> =><math>\cos(2t)=\frac{e^{2jt}+e^{-2jt}}{2}</math>)
 
Line 2: Line 2:
 
<math>e^2jt = te^(-2jt)</math> <br>
 
<math>e^2jt = te^(-2jt)</math> <br>
  
=><math>\cos(2t)=\frac{e^{2jt}+e^{-2jt}}{2}</math>
+
=><math>\cos(2t)=\frac{e^2jt+e^(-2jt)}{2}</math><br>
 +
=<math>\frac{1}{2}

Revision as of 15:46, 18 September 2008

$ e^2jt = te^(-2jt) $
$ e^2jt = te^(-2jt) $

=>$ \cos(2t)=\frac{e^2jt+e^(-2jt)}{2} $
=$ \frac{1}{2} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett