(Linearity)
 
Line 11: Line 11:
 
thus now from the above equations we can see that <math>e^{2jt}</math> converts to <math>te^{-2jt}</math> and <math>e^{-2jt}</math> converts to <math> te^{2jt}</math>
 
thus now from the above equations we can see that <math>e^{2jt}</math> converts to <math>te^{-2jt}</math> and <math>e^{-2jt}</math> converts to <math> te^{2jt}</math>
  
thus <math>cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to system \to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}=t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}]=tcos(2t)</math>
+
thus <math>cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to System \to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}=t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}]=tcos(2t)</math>
  
 
thus  
 
thus  
  
<math>cos(2t) \to system \to tcos(2t)</math>
+
<math>cos(2t) \to System \to tcos(2t)</math>

Latest revision as of 11:18, 18 September 2008

Linearity

The System takes the input and gives the output as follows:

$ e^{2jt} \to System \to te^{-2jt}\! $

$ e^{-2jt} \to System \to te^{2jt}\! $

now,we know that $ cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} $

thus now from the above equations we can see that $ e^{2jt} $ converts to $ te^{-2jt} $ and $ e^{-2jt} $ converts to $ te^{2jt} $

thus $ cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to System \to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}=t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}]=tcos(2t) $

thus

$ cos(2t) \to System \to tcos(2t) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang