(New page: ==Linearity== The System takes the input and gives the output as follows: <math> e^{2jt} \to System \to te^{-2jt}\!</math> <math> e^{-2jt} \to System \to te^{2jt}\!</math> now,we know ...)
 
Line 12: Line 12:
  
 
thus <math>cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to system \to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}=t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}]=tcos(2t)</math>
 
thus <math>cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to system \to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}=t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}]=tcos(2t)</math>
 +
 +
thus
 +
 +
<math>cos(2t) \to system \to tcos(2t)</math>

Revision as of 11:17, 18 September 2008

Linearity

The System takes the input and gives the output as follows:

$ e^{2jt} \to System \to te^{-2jt}\! $

$ e^{-2jt} \to System \to te^{2jt}\! $

now,we know that $ cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} $

thus now from the above equations we can see that $ e^{2jt} $ converts to $ te^{-2jt} $ and $ e^{-2jt} $ converts to $ te^{2jt} $

thus $ cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to system \to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}=t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}]=tcos(2t) $

thus

$ cos(2t) \to system \to tcos(2t) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood