(New page: ==Part C: Application of linearity== ==1. How can Bob decrypt the message? == Bob can get the message by multiplying the Message by the Secret message then decoding the numbers into letter...)
 
(2. Can Eve decrypt the message without finding the inverse of the secret matrix?)
Line 5: Line 5:
 
Yes she can. She can right a system of equations and solve for each component of the secret message.
 
Yes she can. She can right a system of equations and solve for each component of the secret message.
 
:<math>\begin{pmatrix} 1 & 0 & 4 \\  0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}\begin{pmatrix} a & b & c \\  d & e & f \\ g & h & i \end{pmatrix}=\begin{pmatrix} 2 & 0 & 0 \\  0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}</math>
 
:<math>\begin{pmatrix} 1 & 0 & 4 \\  0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}\begin{pmatrix} a & b & c \\  d & e & f \\ g & h & i \end{pmatrix}=\begin{pmatrix} 2 & 0 & 0 \\  0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}</math>
 +
:Multiply out
 +
 +
:<math> a+4g=2, b+4h=0, c+4i=0 \,</math>
 +
:<math> d=0, e=1, f=0 \,</math>
 +
:<math> a+g=0, b+h=0, c+i=0 \,</math>
 +
Solving These Equations yields the Secret Matrix
 +
:<math>\begin{pmatrix}  & 0 & 4 \\  0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}</math>

Revision as of 08:10, 18 September 2008

Part C: Application of linearity

1. How can Bob decrypt the message?

Bob can get the message by multiplying the Message by the Secret message then decoding the numbers into letters.

2. Can Eve decrypt the message without finding the inverse of the secret matrix?

Yes she can. She can right a system of equations and solve for each component of the secret message.

$ \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}=\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} $
Multiply out
$ a+4g=2, b+4h=0, c+4i=0 \, $
$ d=0, e=1, f=0 \, $
$ a+g=0, b+h=0, c+i=0 \, $

Solving These Equations yields the Secret Matrix

$ \begin{pmatrix} & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison