Line 8: | Line 8: | ||
<math>x(t) \rightarrow linear-system \rightarrow y(t) = tx(-t)</math> | <math>x(t) \rightarrow linear-system \rightarrow y(t) = tx(-t)</math> | ||
+ | |||
+ | Therefore, when the input, x(t) = cos(2t), the output is as follows: | ||
+ | |||
+ | <math>cost(2t) \rightarrow linear-system \rightarrow y(t) = tcos(-2t)</math> |
Revision as of 07:57, 18 September 2008
Part B: The basics of linearity
$ e^{2jt} \rightarrow linear-system \rightarrow te^{-2jt} $
$ e^{-2jt} \rightarrow linear-system \rightarrow te^{2jt} $
From these two transformations we can tell that the system is as below:
$ x(t) \rightarrow linear-system \rightarrow y(t) = tx(-t) $
Therefore, when the input, x(t) = cos(2t), the output is as follows:
$ cost(2t) \rightarrow linear-system \rightarrow y(t) = tcos(-2t) $