Line 8: Line 8:
 
The above solution works for this case, but it does not show the properties of linearity.
 
The above solution works for this case, but it does not show the properties of linearity.
  
If <math>x_1(t)=e^{2jt)</math> and <math>x_2(t)=e^{-2jt)</math>,
+
If <math>x_1(t)=e^{2jt}</math> and <math>x_2(t)=e^{-2jt}</math>,
 
Take the input signal to be <math>\frac{1,2}(x_1(t)+x_2(t)}</math>.  
 
Take the input signal to be <math>\frac{1,2}(x_1(t)+x_2(t)}</math>.  
The response to the input is <math>y(t)=\frac{1.2}y_1(t)+\frac{1,2}y_2(t)</math> because the system is linear.
+
The response to the input is <math>y(t)=\frac{1,2}y_1(t)+\frac{1,2}y_2(t)</math> because the system is linear.
  
<math>\frac{1,2}e^{2jt)+\frac{1,2}e^{-2jt}\rightarrowsystem\rightarrow\t(frac{1,2}e^{-2jt)+\frac{1,2}e^{2jt})</math>
+
<math>\frac{1,2}e^{2jt}+\frac{1,2}e^{-2jt}\rightarrowsystem\rightarrow\t(frac{1,2}e^{-2jt}+\frac{1,2}e^{2jt})</math>
  
<math>t(frac{1,2}e^{-2jt)+\frac{1,2}e^{2jt})=t(/frac{1,2}(e^{-2jt)+e^{2jt})</</math>
+
<math>t(frac{1,2}e^{-2jt}+\frac{1,2}e^{2jt})=t(/frac{1,2}(e^{-2jt}+e^{2jt})</</math>
  
 
                             <math>=t(/frac{1,2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t))</math>
 
                             <math>=t(/frac{1,2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t))</math>

Revision as of 09:50, 18 September 2008

since $ x(t)=e^{2jt} $ yields $ y(t)=te^{-2jt} $ and $ x(t)=e^{-2jt} $ yields $ x(t)=te^{2jt} $, it is easy to see that x(t) yields y(t)=t*x(-t).

Based on the above, $ x(t)=cos(2t) $ would yield $ y(t)=tx(-t)=tcos(-2t) $.


The above solution works for this case, but it does not show the properties of linearity.

If $ x_1(t)=e^{2jt} $ and $ x_2(t)=e^{-2jt} $, Take the input signal to be $ \frac{1,2}(x_1(t)+x_2(t)} $. The response to the input is $ y(t)=\frac{1,2}y_1(t)+\frac{1,2}y_2(t) $ because the system is linear.

$ \frac{1,2}e^{2jt}+\frac{1,2}e^{-2jt}\rightarrowsystem\rightarrow\t(frac{1,2}e^{-2jt}+\frac{1,2}e^{2jt}) $

$ t(frac{1,2}e^{-2jt}+\frac{1,2}e^{2jt})=t(/frac{1,2}(e^{-2jt}+e^{2jt})</ $

                            $ =t(/frac{1,2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t)) $
                            $ =t(/frac{1,2}(cos(2t)-jsin(2t)+cos(2t)+jsin2(t)) $
      
                            $ =t(/frac{1,2}(2cos(2t)) $
                            $ =tcos(2t) $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison