(Basics of Linearity)
(Basics of Linearity)
Line 14: Line 14:
 
Using the properties of cosine we can convert cos(2t) to an exponential function.
 
Using the properties of cosine we can convert cos(2t) to an exponential function.
  
cos(2t) = <math>\frac{e^{2tj}+e^{-2tj}}{2}</math>
+
cos(2t) = <math>\frac{e^{2tj}+e^{-2tj}}{2}</math> = <math>\frac{1}{2}*(x1(t)) + x2(t))</math>

Revision as of 07:17, 18 September 2008

Basics of Linearity

Definition of Linearity: For any constants a and b (that are complext numbers), and inputs x1(t) and x2(t) which yield outputs y1(t) and y2(t),

$ a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t) $

We are given a linear system that behaves as follows,

$ e^{2jt} --> Sys --> t*e^{-2jt} $

and asked to find the response to find the response to cos(2t).


Solution: Using the properties of cosine we can convert cos(2t) to an exponential function.

cos(2t) = $ \frac{e^{2tj}+e^{-2tj}}{2} $ = $ \frac{1}{2}*(x1(t)) + x2(t)) $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn