(→Basics of Linearity) |
(→Basics of Linearity) |
||
Line 18: | Line 18: | ||
:so the response is equal to | :so the response is equal to | ||
− | :<math>\cos 2t \, </math> | + | :<math>\t cos 2t \, </math> |
Revision as of 07:34, 18 September 2008
Basics of Linearity
Given
- $ e^{2 x i}=t e^{-2 x i}\, $
- $ e^{-2 x i}=t e^{2 x i}\, $
- The Signal is Linear
- $ \cos x = \dfrac{e^{i x}+e^{-i x}}{2} $
- $ \cos 2x = \dfrac{e^{2 i x}+e^{-2 i x}}{2} $
The Systems response to $ \cos 2x $ is $ \ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} $ but
- $ e^{2 x i}=\cos 2x + i \sin 2x \, $ and
- $ e^{-2 x i}=\cos 2x - i \sin 2x \, $
- so the response is equal to
- $ \t cos 2t \, $