(Basics of Linearity)
(Basics of Linearity)
Line 3: Line 3:
 
:<math>e^{2 x i}=t e^{-2 x i}\, </math>
 
:<math>e^{2 x i}=t e^{-2 x i}\, </math>
 
:<math>e^{-2 x i}=t e^{2 x i}\, </math>
 
:<math>e^{-2 x i}=t e^{2 x i}\, </math>
Equations you need to know
+
 
  
 
:<math>\cos x = \dfrac{e^{i x}+e^{-i x}}{2}</math>
 
:<math>\cos x = \dfrac{e^{i x}+e^{-i x}}{2}</math>

Revision as of 07:09, 18 September 2008

Basics of Linearity

Given

$ e^{2 x i}=t e^{-2 x i}\, $
$ e^{-2 x i}=t e^{2 x i}\, $


$ \cos x = \dfrac{e^{i x}+e^{-i x}}{2} $
$ \cos 2x = \dfrac{e^{2 i x}+e^{-2 i x}}{2} $

The Systems response to $ \cos 2x $ is $ \ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} $ but

$ e^{2 x i}=\cos 2x + i \sin 2x \, $ and $ e^{-2 x i}=\cos 2x - i \sin 2x \, $ so the response is
$ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} = t\cos 2t $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett