(→Basics of Linearity) |
(→Basics of Linearity) |
||
Line 11: | Line 11: | ||
is | is | ||
<math>\ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} </math> | <math>\ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} </math> | ||
+ | :<math>\dfrac{t e^{-2 i x} + t e^{2 i x}}{2} = t\cos 2t </math> |
Revision as of 07:02, 18 September 2008
Basics of Linearity
Given
- $ e^{2 x i}=t e^{-2 x i}\, $
- $ e^{-2 x i}=t e^{2 x i}\, $
- $ \cos x = \dfrac{e^{i x}+e^{-i x}}{2} $
- $ \cos 2x = \dfrac{e^{2 i x}+e^{-2 i x}}{2} $
The Systems response to $ \cos 2x $ is $ \ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} $
- $ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} = t\cos 2t $