(New page: == Problem == Given that the response to <math>x(t)=exp(2jt)</math> is <math>y(t)=t*exp(-2jt)</math>, and its response to <math>x(t)=exp(-2jt)</math> is <math>y(t)=t*exp(2jt)</math>. Wha...)
 
(Solution)
 
Line 4: Line 4:
  
 
== Solution ==
 
== Solution ==
 +
If a system is linear we know that:
 +
 +
<math>ax(t)+bx(t)=ay(t)+by(t)</math>
 +
 +
Using Euler's Method we know that:
 +
 +
<math>exp(jt)=cos(t)+jsin(t)</math>
 +
 +
Given this:
 +
 +
<math>exp(2jt)+exp(-2jt)=cos(2t)+j*sin(2t)+cos(-2t)+j*sin(-2t)</math>
 +
 +
<math>exp(2jt)+exp(-2jt)=cos(2t)+j*sin(2t)+cos(2t)-j*sin(2t)</math>
 +
 +
<math>exp(2jt)+exp(-2jt)=2cos(2t)</math>
 +
 +
So now:
 +
 +
<math>.5*2cos(2t)=cos(2t)</math>
 +
 +
<math>cos(2t)-->.5*(t*exp(2jt)+t*exp(-2jt))</math>
 +
 +
<math>cos(2t)--> t*cos(2t)</math>

Latest revision as of 05:59, 18 September 2008

Problem

Given that the response to $ x(t)=exp(2jt) $ is $ y(t)=t*exp(-2jt) $, and its response to $ x(t)=exp(-2jt) $ is $ y(t)=t*exp(2jt) $. What is the systems response to $ x(t)=cos(2t) $?

Solution

If a system is linear we know that:

$ ax(t)+bx(t)=ay(t)+by(t) $

Using Euler's Method we know that:

$ exp(jt)=cos(t)+jsin(t) $

Given this:

$ exp(2jt)+exp(-2jt)=cos(2t)+j*sin(2t)+cos(-2t)+j*sin(-2t) $

$ exp(2jt)+exp(-2jt)=cos(2t)+j*sin(2t)+cos(2t)-j*sin(2t) $

$ exp(2jt)+exp(-2jt)=2cos(2t) $

So now:

$ .5*2cos(2t)=cos(2t) $

$ cos(2t)-->.5*(t*exp(2jt)+t*exp(-2jt)) $

$ cos(2t)--> t*cos(2t) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang