(Rhea HW3.A Brian Thomas)
 
(Wrong definition! Brian Thomas -- updating)
Line 1: Line 1:
'''Problem:''' 5 - Give a formal definition of a “stable system”. Give a formal definition of an unstable system.  
+
'''Problem:''' 5 - Give a formal definition of a “stable system”. Give a formal definition of an unstable system.
 
+
 
+
'''Solution:''' Consider system f, where input x(t) yields output y(t) = f(x(t)).  Consider bounded x(t), i.e. <math>\exists M_1 \in \mathbb{R} \text{ s.t. } \forall t \in \mathbb{R}, |x(t)|\leq M_1</math>.  The system f can be considered '''stable''' iff <math>\forall x(t), \exists M_2 \in \mathbb{R} \text{ s.t. } \forall t \in \mathbb{R}, |f(x(t))| \leq M_2</math>
+
 
+
(ie, The system f is stable iff for all x(t), if x(t) is bounded, then f(x(t)) is bounded as well.)
+
 
+
 
+
Consider system f, where input x(t) yields output y(t) = f(x(t)).  Consider bounded x(t), i.e. <math>\exists M_1 \in \mathbb{R} \text{ s.t. } \forall t \in \mathbb{R}, |x(t)|\leq M_1</math>.  The system f can be considered '''unstable''' iff <math>\exists x(t) \text{ s.t. } \nexists M_2 \in \mathbb{R} \text{ s.t. } \forall t \in \mathbb{R}, |f(x(t))| \leq M_2</math>
+
 
+
(ie, The system f is stable iff there exists a bounded x(t) for which f(x(t)) is not bounded.)
+

Revision as of 15:42, 18 September 2008

Problem: 5 - Give a formal definition of a “stable system”. Give a formal definition of an unstable system.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood