(New page: A linear system’s response to <math>e^{2jt}</math> is <math>t*e^{-2jt}</math>, and its response to <math>e^{-2jt}</math> is <math>t*e^{2jt}</math>. What is the system’s response to <...)
 
Line 4: Line 4:
  
  
Well, if we convert <math>\cos(2t)</math> using euler's formula, we get <math> 1/2 * e^{2jt) + 1/2 * e^{-2jt} </math>.
+
Well, if we convert <math>\cos(2t)</math> using euler's formula, we get <math> 1/2 * e^{2jt} + 1/2 * e^{-2jt} </math>.
 +
 
 +
 
 +
Since the system is linear, we can assume that with constants of 1/2,
 +
 
 +
<math> 1/2 * x_1(t) + 1/2*x_2(t) => 1/2*y_1(t)+1/2*y_2(t)</math>
 +
 
 +
So our result is
 +
 
 +
<math> 1/2 * t * e^{-2jt} + 1/2 * t * e^{2jt} </math>

Revision as of 17:56, 17 September 2008

A linear system’s response to $ e^{2jt} $ is $ t*e^{-2jt} $, and its response to $ e^{-2jt} $ is $ t*e^{2jt} $.

What is the system’s response to $ \cos(2t) $?


Well, if we convert $ \cos(2t) $ using euler's formula, we get $ 1/2 * e^{2jt} + 1/2 * e^{-2jt} $.


Since the system is linear, we can assume that with constants of 1/2,

$ 1/2 * x_1(t) + 1/2*x_2(t) => 1/2*y_1(t)+1/2*y_2(t) $

So our result is

$ 1/2 * t * e^{-2jt} + 1/2 * t * e^{2jt} $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach