Line 37: Line 37:
 
4G+I=3 <br>
 
4G+I=3 <br>
 
and so
 
and so
 +
A=-\frac{2}{3} <br>
 +
C=\frac{8}{3} <br>
 
D=0 <br>
 
D=0 <br>
E=1 <br>
 
 
F=0 <br>
 
F=0 <br>
A=B=-2/3 <br>
+
G=1<br>
G=H=2/3 <br>
+
 
I=-1 <br>
 
I=-1 <br>
C=4 <br>
 
 
i.e.
 
i.e.
  

Revision as of 14:27, 18 September 2008

1. Bob needs to calculate the inverse of the secret matrix, and multiply it by the code given by Alice to get a vector. Then replaces each three entries by its corresponding letter in the alphabet.

2.Eve can get the secret matrix through calculation.

$ \begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} $


Thus we have A+C=2
B=0
4A+C=0
D+F=0
E=1
4D+F=0
G+I=0
H=0
4G+I=3
and so A=-\frac{2}{3}
C=\frac{8}{3}
D=0
F=0
G=1
I=-1
i.e.


$ \begin{bmatrix} -\frac{2}{3} & -\frac{2}{3} & 4 \\ 0 & 1 & 0 \\ \frac{2}{3} & \frac{2}{3} & -1 \end{bmatrix} $

3. The inverse matrix is

$ \begin{bmatrix} \frac{1}{2} & -1 & 2 \\ 0 & 1 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} \end{bmatrix} $

So(2,23,3) --> (1,23,1) --> AWE

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett