(System Response)
(System Response)
Line 8: Line 8:
 
Output = Response(<math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math>)
 
Output = Response(<math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math>)
  
       = Response(<math>\frac{e^{2jt}</math>)+
+
       = Response of(<math>\frac{e^{2jt}\,</math>)+ Response of(<math>\frac{e^{-2jt}\,</math>)
  
       <math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math>
+
       <math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math> (derive from given conditions)
  
 
       <math>=t\frac{e^{2jt}+e^{-2jt}}{2}\,</math>
 
       <math>=t\frac{e^{2jt}+e^{-2jt}}{2}\,</math>
  
 
       <math>=t\cos(2t)\,</math>
 
       <math>=t\cos(2t)\,</math>

Revision as of 08:20, 18 September 2008

System Response

Based on the Euler Formula, $ \cos(2t)\,= \frac{e^{2jt}+e^{-2jt}}{2}\, $.

We already had the response of $ e^{2jt}\, $ is $ te^{-2jt}\, $ and the response of $ e^{-2jt}\, $ is $ te^{2jt}\, $.

Since the system is a LTI system, we have

Output = Response($ \frac{e^{2jt}+e^{-2jt}}{2}\, $)

      = Response of($ \frac{e^{2jt}\, $)+ Response of($ \frac{e^{-2jt}\, $) 
     $ =\frac{te^{2jt}+te^{-2jt}}{2}\, $ (derive from given conditions)
     $ =t\frac{e^{2jt}+e^{-2jt}}{2}\, $
     $ =t\cos(2t)\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang