(New page: == System Response == <math>\cos(2t)\,= \frac{e^{2jt}+e^{-2jt}}{2}\,</math>. We already had the response of <math>e^{2jt}\,</math> is <math>te^{-2jt}\,</math> and the response of <math>e^...)
 
(System Response)
Line 1: Line 1:
 
== System Response ==
 
== System Response ==
<math>\cos(2t)\,= \frac{e^{2jt}+e^{-2jt}}{2}\,</math>.
+
Based on the Euler Formula, <math>\cos(2t)\,= \frac{e^{2jt}+e^{-2jt}}{2}\,</math>.
  
 
We already had the response of <math>e^{2jt}\,</math> is <math>te^{-2jt}\,</math> and the response of <math>e^{-2jt}\,</math> is <math>te^{2jt}\,</math>.
 
We already had the response of <math>e^{2jt}\,</math> is <math>te^{-2jt}\,</math> and the response of <math>e^{-2jt}\,</math> is <math>te^{2jt}\,</math>.
  
Assuming the system is a LTI system, we can substitute the response of <math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math> with the values above.
+
Since the system is a LTI system, we have
  
Thus the system will produce the following response as an output :
+
Output = Response(<math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math>)
  
<math>\frac{te^{2jt}+te^{-2jt}}{2}\,</math>
+
      <math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math>
  
<math>=t\frac{e^{2jt}+e^{-2jt}}{2}\,</math>
+
      <math>=t\frac{e^{2jt}+e^{-2jt}}{2}\,</math>
  
<math>=t\cos(2t)\,</math>
+
      <math>=t\cos(2t)\,</math>

Revision as of 06:50, 18 September 2008

System Response

Based on the Euler Formula, $ \cos(2t)\,= \frac{e^{2jt}+e^{-2jt}}{2}\, $.

We already had the response of $ e^{2jt}\, $ is $ te^{-2jt}\, $ and the response of $ e^{-2jt}\, $ is $ te^{2jt}\, $.

Since the system is a LTI system, we have

Output = Response($ \frac{e^{2jt}+e^{-2jt}}{2}\, $)

     $ =\frac{te^{2jt}+te^{-2jt}}{2}\, $
     $ =t\frac{e^{2jt}+e^{-2jt}}{2}\, $
     $ =t\cos(2t)\, $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva