(New page: == Part A: Understanding System’s Properties == Definition of a '''Memoryless System''' - A system is said to be memoryless if for any <math>t \epsilon \mathbb{R} \!</math> the output <...)
 
(Part A: Understanding System’s Properties)
 
Line 1: Line 1:
 
== Part A: Understanding System’s Properties ==
 
== Part A: Understanding System’s Properties ==
  
Definition of a '''Memoryless System''' - A system is said to be memoryless if for any <math>t \epsilon \mathbb{R} \!</math> the output <math>y(t)\!</math> depends only on the input at <math>t\!</math> (as opposed to <math>(t-t_0)\!</math>,<math>(-t)\!</math>, etc).
+
Definition of a '''Memoryless System''' - A system is said to be memoryless if for any <math>t \in \mathbb{R} \!</math> the output <math>y(t)\!</math> depends only on the input at <math>t\!</math> (as opposed to <math>(t-t_0)\!</math>,<math>(-t)\!</math>, etc).
  
Definition of a '''System with Memory''' - A system is said to have memory if for any <math>t \epsilon \mathbb{R} \!</math> the output <math>y(t)\!</math> depends on either a past or future value of <math>t\!</math>, such as <math>(t+t_0)\!</math>.
+
Definition of a '''System with Memory''' - A system is said to have memory if for any <math>t \in \mathbb{R} \!</math> the output <math>y(t)\!</math> depends on either a past or future value of <math>t\!</math>, such as <math>(t+t_0)\!</math>.

Latest revision as of 10:13, 17 September 2008

Part A: Understanding System’s Properties

Definition of a Memoryless System - A system is said to be memoryless if for any $ t \in \mathbb{R} \! $ the output $ y(t)\! $ depends only on the input at $ t\! $ (as opposed to $ (t-t_0)\! $,$ (-t)\! $, etc).

Definition of a System with Memory - A system is said to have memory if for any $ t \in \mathbb{R} \! $ the output $ y(t)\! $ depends on either a past or future value of $ t\! $, such as $ (t+t_0)\! $.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett