(Basics of Linearity)
(Basics of Linearity)
 
Line 10: Line 10:
  
 
<math>x(t) \to system \to t x(-t)</math>
 
<math>x(t) \to system \to t x(-t)</math>
 +
 +
We know that
 +
 +
<math>x(t) = cos(2t) = \frac{e^{2jt} + e^{-2jt}}{2}</math>.
 +
 +
So if we take the known system and apply it to the equation right above, the response will be:
 +
 +
<math>\frac{te^{-2jt} + te^{2jt}}{2} = t \frac{e^{-2jt} + e^{2jt}}{2}</math>
 +
 +
Which is then equivalent to <font size ="3">'''<math>tcos(2t)</math>'''</font>
 +
 +
The response to <font size ="3">'''<math>cos(2t)</math>'''</font> is <font size ="3">'''<math>tcos(2t)</math>'''</font>.

Latest revision as of 14:55, 16 September 2008

Basics of Linearity

Systems given:

$ e^{2jt} \to system \to t e^{-2jt} $

$ e^{-2jt} \to system \to t e^{2jt} $

The basic concept known from the systems given is:

$ x(t) \to system \to t x(-t) $

We know that

$ x(t) = cos(2t) = \frac{e^{2jt} + e^{-2jt}}{2} $.

So if we take the known system and apply it to the equation right above, the response will be:

$ \frac{te^{-2jt} + te^{2jt}}{2} = t \frac{e^{-2jt} + e^{2jt}}{2} $

Which is then equivalent to $ tcos(2t) $

The response to $ cos(2t) $ is $ tcos(2t) $.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang