(Invertible Systems)
(Invertible Systems)
Line 1: Line 1:
 
== Invertible Systems ==
 
== Invertible Systems ==
 
+
 
A system is invertible if distinct inputs yield distinct outputs.
 
A system is invertible if distinct inputs yield distinct outputs.
  
 
  Invertible System:
 
  Invertible System:
 
+
 
  y(t) = <math>\frac{3*x(t) + 8}{1}</math>
 
  y(t) = <math>\frac{3*x(t) + 8}{1}</math>
 
+
 
  x(t) = <math>\frac{y(t) - 8}{3}</math>
 
  x(t) = <math>\frac{y(t) - 8}{3}</math>
 
+
 
  x(t) -> |Sys 1| -> y(t) -> |Sys 2| -> x(t)
 
  x(t) -> |Sys 1| -> y(t) -> |Sys 2| -> x(t)
 
+
 
  The two equations are inverses of each other.
 
  The two equations are inverses of each other.
  
 
  Noninvertible System:
 
  Noninvertible System:
 
+
 
  y(t) = <math>t^4</math>
 
  y(t) = <math>t^4</math>
+
 
 
  x(t) = <math>t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
 
  x(t) = <math>t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
 
+
 
 
  x(t) = <math>-t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
 
  x(t) = <math>-t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
 
+
 
  The System is not invertible because for a given set of inputs you cannot differentiate which of the output will result.
 
  The System is not invertible because for a given set of inputs you cannot differentiate which of the output will result.

Revision as of 12:23, 16 September 2008

Invertible Systems

A system is invertible if distinct inputs yield distinct outputs.

Invertible System:

y(t) = $ \frac{3*x(t) + 8}{1} $

x(t) = $ \frac{y(t) - 8}{3} $

x(t) -> |Sys 1| -> y(t) -> |Sys 2| -> x(t)

The two equations are inverses of each other.
Noninvertible System:

y(t) = $ t^4 $
 
x(t) = $ t $     ->     |Sys|     ->     y(t) = $ t^4 $
  
x(t) = $ -t $    ->     |Sys|     ->     y(t) = $ t^4 $

The System is not invertible because for a given set of inputs you cannot differentiate which of the output will result.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood