(Basics of Linearity)
(Basics of Linearity)
Line 10: Line 10:
  
 
* The system is Linear.
 
* The system is Linear.
 +
 +
 +
We can break down the input <math> \,\ x(t) = cos(2t) </math> into <math> \,\ x(t) = \frac{1}{2} * (e</math><sup>(j2t)</sup> <math> \,\ + e</math><sup>(-j2t)</sup><math> \,\ )</math>.
 +
 +
Now we can use the property of linearity to determine the output.

Revision as of 12:14, 16 September 2008

Basics of Linearity

ECE301HW3 ECE301Fall2008mboutin.JPG

We are given the following information:

  • For input $ x(t) = e $ (2jt) the output $ y(t) = te $(-2jt).
  • For input $ x(t) = e $ (-2jt) the output $ y(t) = te $(2jt).
  • The system is Linear.


We can break down the input $ \,\ x(t) = cos(2t) $ into $ \,\ x(t) = \frac{1}{2} * (e $(j2t) $ \,\ + e $(-j2t)$ \,\ ) $.

Now we can use the property of linearity to determine the output.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal