(New page: << Back to Homework 3 Homework 3 Ben Horst: A :: B :: C ----) |
(did it) |
||
Line 3: | Line 3: | ||
Homework 3 Ben Horst: [[HW3.A Ben Horst _ECE301Fall2008mboutin| A]] :: [[HW3.B Ben Horst _ECE301Fall2008mboutin| B]] :: [[HW3.C Ben Horst _ECE301Fall2008mboutin| C]] | Homework 3 Ben Horst: [[HW3.A Ben Horst _ECE301Fall2008mboutin| A]] :: [[HW3.B Ben Horst _ECE301Fall2008mboutin| B]] :: [[HW3.C Ben Horst _ECE301Fall2008mboutin| C]] | ||
---- | ---- | ||
+ | |||
+ | ==Answer== | ||
+ | If the system is linear (it is) then the following should be true: | ||
+ | |||
+ | Thus, if we say | ||
+ | |||
+ | x1 = exp(2jt) and x2 = exp(-2jt) | ||
+ | |||
+ | then | ||
+ | |||
+ | y1 = t exp(-2jt) and y2 = t exp(2jt) | ||
+ | |||
+ | |||
+ | That means that: | ||
+ | |||
+ | x1 + x2 ->|system|-> y1 + y2 | ||
+ | |||
+ | |||
+ | Since <math>\cos(2t) = {e^{j2t} + e^{-j2t} \over 2}</math> | ||
+ | |||
+ | Then we can suggest that <math>{1 \over 2t}x1 + {1 \over 2t}x2 -> |system| -> {1 \over 2t}y1 + {1 \over 2t}y2 </math> | ||
+ | |||
+ | This leads to the conclusion that the input of cos(2t) would be <math>{1 \over 2t}x1 + {1 \over 2t}x2</math> | ||
+ | |||
+ | Which, simplified, is: <math>\cos(2t) \over t</math>. |
Revision as of 09:57, 19 September 2008
Homework 3 Ben Horst: A :: B :: C
Answer
If the system is linear (it is) then the following should be true:
Thus, if we say
x1 = exp(2jt) and x2 = exp(-2jt)
then
y1 = t exp(-2jt) and y2 = t exp(2jt)
That means that:
x1 + x2 ->|system|-> y1 + y2
Since $ \cos(2t) = {e^{j2t} + e^{-j2t} \over 2} $
Then we can suggest that $ {1 \over 2t}x1 + {1 \over 2t}x2 -> |system| -> {1 \over 2t}y1 + {1 \over 2t}y2 $
This leads to the conclusion that the input of cos(2t) would be $ {1 \over 2t}x1 + {1 \over 2t}x2 $
Which, simplified, is: $ \cos(2t) \over t $.