Line 6: Line 6:
 
<math>e^{(-2jt)} = cos{(2t)} - jsin{(2t)} -> system -> t*{(cos{(2t)} + jsin{(2t)})}\,</math><br><br>
 
<math>e^{(-2jt)} = cos{(2t)} - jsin{(2t)} -> system -> t*{(cos{(2t)} + jsin{(2t)})}\,</math><br><br>
  
<math>\frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} =</math><math> \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)}) = cos{(2t)}</math>
+
<math>cos{(2t)} = \frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} =</math><math> \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)})</math>

Revision as of 16:50, 19 September 2008

Part B: The basics of linearity

System’s response to cos(2t)

Using Euler's formula, we get

$ e^{(2jt)} = cos{(2t)} + jsin{(2t)} -> system -> t*{(cos{(2t)} - jsin{(2t)})}\, $
$ e^{(-2jt)} = cos{(2t)} - jsin{(2t)} -> system -> t*{(cos{(2t)} + jsin{(2t)})}\, $

$ cos{(2t)} = \frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} = $$ \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)}) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett