Line 13: | Line 13: | ||
<math> x[n] = e^{j*pi*n} -> n*e^{-j*pi*n} </math> | <math> x[n] = e^{j*pi*n} -> n*e^{-j*pi*n} </math> | ||
− | <math> x[n] | + | |
+ | <math> x[n] \to Sys 1 \to n*x[-n] </math> |
Revision as of 14:22, 18 September 2008
The Basics of Linearity
A system is linear if its inputs are sequentially equal to the outputs for a certain function:
$ x(t) = a*x1(t) + b*x2(t) = a*y1(t) + b*y2(t) $
Take for a simple example:
Ex) What is the output of:
$ x[n] = e^{j*pi*n} -> n*e^{-j*pi*n} $
$ x[n] \to Sys 1 \to n*x[-n] $