(New page: First let's take a quick look at the example systems' results to determine what the system does. What we know:<br> <math>input \rightarrow system \rightarrow output\!</math> <br> <math>e^{...)
 
Line 8: Line 8:
 
It looks like the system is performing the following operation:<br>
 
It looks like the system is performing the following operation:<br>
 
<math>x(t) \rightarrow system \rightarrow tx(-t)\!</math><br>
 
<math>x(t) \rightarrow system \rightarrow tx(-t)\!</math><br>
When the preceding system is applied to <math>cos(2t)</math>, we the get result:
+
When the preceding system is applied to <math>cos(2t)</math>, we the get result:<br>
<math>cos(2t) \rightarrow system \rightarrow tcos(-2t)\!</math><br>
+
<math>cos(2t) \rightarrow system \rightarrow tcos(-2t)\!</math><br><br>
 
Therefore, the system's response will be <math>t*cos(-2t)</math>.
 
Therefore, the system's response will be <math>t*cos(-2t)</math>.

Revision as of 12:49, 14 September 2008

First let's take a quick look at the example systems' results to determine what the system does. What we know:
$ input \rightarrow system \rightarrow output\! $
$ e^{2jt} \rightarrow system \rightarrow te^{-2jt}\! $
$ e^{-2jt} \rightarrow system \rightarrow te^{2jt}\! $

It looks like the system is performing the following operation:
$ x(t) \rightarrow system \rightarrow tx(-t)\! $
When the preceding system is applied to $ cos(2t) $, we the get result:
$ cos(2t) \rightarrow system \rightarrow tcos(-2t)\! $

Therefore, the system's response will be $ t*cos(-2t) $.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett