Line 9: Line 9:
  
 
Now, suppose a and b are 1/2.<br>
 
Now, suppose a and b are 1/2.<br>
<math>\frac{1}{2}e^{(2jt)} + frac{1}{2}e^{(-2jt)} = frac{1}{2}(cos{(2t)} + jsin{(2t)}) + frac{1}{2}cos{(2t)} - jsin{(2t)} = cos{(2t)}</math>
+
<math>\,\frac{1}{2}e^{(2jt)} + frac{1}{2}e^{(-2jt)} = frac{1}{2}(cos{(2t)} + jsin{(2t)}) + frac{1}{2}cos{(2t)} - jsin{(2t)} = cos{(2t)}</math>

Revision as of 10:00, 13 September 2008

  • I am going to use the definition of Linearity that I learned in class.
  • The definition
 if x1(t) --> system --> y1(t)
x2(t) --> system --> y2(t)
Then ax1(t) + bx2(t) --> system --> ay1(t) + by2(t) , for any complex constants a,b

$ e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\, $
$ e^{(-2jt)} = cos{(2t)} - jsin{(2t)} --> system --> t*{(cos{(2t)} + jsin{(2t)})}\, $

Now, suppose a and b are 1/2.
$ \,\frac{1}{2}e^{(2jt)} + frac{1}{2}e^{(-2jt)} = frac{1}{2}(cos{(2t)} + jsin{(2t)}) + frac{1}{2}cos{(2t)} - jsin{(2t)} = cos{(2t)} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva