(New page: == IS THIS SYSTEM TIME INVARIANT? == '''<math>X_k[n] = d[n-k] \Rightarrow Y_k[n]=(k+1)2 d[n-(k+1)]</math>''' '''TEST''' '''<math>d[n-k] \Rightarrow (k+1)2 d[n-(k+1)] \rightarrow [time ...)
 
(IS THIS SYSTEM TIME INVARIANT?)
 
Line 6: Line 6:
 
'''TEST'''
 
'''TEST'''
  
'''<math>d[n-k] \Rightarrow (k+1)2 d[n-(k+1)] \rightarrow [time delay] \rightarrow (k+1)^2 d[n -(k+1) - t_o]</math>'''
+
'''<math>d[n-k] \Rightarrow (k+1)2 d[n-(k+1)] \rightarrow [time delay] \rightarrow Z(t) = (k+1)^2 d[n -(k+1) - t_o]</math>'''
  
  
'''<math>d[n-k] \rightarrow [time delay] \rightarrow d[(n-k) - t_o] \Rightarrow (k+1)^2 d[n -(k+1) - t_o]</math>'''
+
'''<math>d[n-k] \rightarrow [time delay] \rightarrow d[(n-k) - t_o] \Rightarrow W(t) = (k+1)^2 d[n -(k+1) - t_o]</math>'''
 +
 
 +
since '''<math>Z(t) = W(t)</math>''' the system is time invariant.
 +
 
 +
 
 +
'''PART B'''
 +
 
 +
Assuming that this system is linear, what input '''<math>X[n]</math>''' would yield the output '''<math>Y[n]=u[n-1]</math>'''?
 +
 
 +
The input would have to be '''<math>u[n]</math>'''

Latest revision as of 17:45, 12 September 2008

IS THIS SYSTEM TIME INVARIANT?

$ X_k[n] = d[n-k] \Rightarrow Y_k[n]=(k+1)2 d[n-(k+1)] $


TEST

$ d[n-k] \Rightarrow (k+1)2 d[n-(k+1)] \rightarrow [time delay] \rightarrow Z(t) = (k+1)^2 d[n -(k+1) - t_o] $


$ d[n-k] \rightarrow [time delay] \rightarrow d[(n-k) - t_o] \Rightarrow W(t) = (k+1)^2 d[n -(k+1) - t_o] $

since $ Z(t) = W(t) $ the system is time invariant.


PART B

Assuming that this system is linear, what input $ X[n] $ would yield the output $ Y[n]=u[n-1] $?

The input would have to be $ u[n] $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang