(6A)
(6A)
Line 1: Line 1:
 
== 6A ==
 
== 6A ==
<math>\,y(t)=(a+1)^{2}x(t-a)}\,</math>
+
<math>\,y(t)=(a+1)^{2}x(t-a)\,</math>
  
  

Revision as of 17:21, 12 September 2008

6A

$ \,y(t)=(a+1)^{2}x(t-a)\, $


Proof:

$ x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =e^{x(t-t0)}\, $


$ x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)} $

$ \, =e^{x(t-t0)}\, $


Both cascades yielded the same outputs, thus $ \,y(t)=e^{x(t)}\, $ is time invariant.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett