(TIME-INVARIANT SYSTEM)
(TIME-INVARIANT SYSTEM)
Line 17: Line 17:
  
  
'''<math>X(t)\to [time delay] \to Y(t) = X(t - t_o) \Rightarrow Z(t) = a*Y(t) = a*X(t - t_o)</math>'''
+
'''<math>X(t)\to [time delay] \to Y(t) = X(t - t_o) \Rightarrow W(t) = a*Y(t) = a*X(t - t_o)</math>'''
 +
 
 +
'''<math>W(t) = Z(t)</math>'''
  
 
== TIME-VARIANT SYSTEM ==
 
== TIME-VARIANT SYSTEM ==

Revision as of 15:41, 12 September 2008

TIME INVARIANCE

Let " $ \Rightarrow $ " represent a system.

If for any signal $ X(t)\Rightarrow Y(t) $ implies that $ X(t - t_o)\Rightarrow Y(t - t_o) $ then the system is time invariant.

TIME-INVARIANT SYSTEM

$ X(t)\Rightarrow Y(t) = a*X(t) $ where $ a \in \mathbb{{C}} $ is a time invariant system.


PROOF

$ X(t)\Rightarrow Y(t) = a*X(t) \to [time delay] \to Z(t) = Y(t - t_o) = a*X(t - t_o) $


$ X(t)\to [time delay] \to Y(t) = X(t - t_o) \Rightarrow W(t) = a*Y(t) = a*X(t - t_o) $

$ W(t) = Z(t) $

TIME-VARIANT SYSTEM

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010