(TIME INVARIANCE)
(TIME-INVARIANT SYSTEM)
Line 7: Line 7:
  
 
== TIME-INVARIANT SYSTEM ==
 
== TIME-INVARIANT SYSTEM ==
 +
 +
'''<math>X(t)\Rightarrow Y(t) = a*X(t)</math>''' where '''<math>a \in \mathbb{{C}}</math>''' is a time invariant system.
 +
 +
----
 +
 +
'''PROOF'''
 +
 +
'''<math>X(t)\Rightarrow Y(t) = a*X(t) \to [time delay] \to Z(t) = Y(t - t_o) = a*X(t - t_o)</math>'''
 +
 +
 +
'''<math>X(t)\to [time delay] \to Y(t) = X(t - t_o) \Rightarrow Z(t) = a*Y(t) = a*X(t - t_o)</math>'''
  
 
== TIME-VARIANT SYSTEM ==
 
== TIME-VARIANT SYSTEM ==

Revision as of 15:41, 12 September 2008

TIME INVARIANCE

Let " $ \Rightarrow $ " represent a system.

If for any signal $ X(t)\Rightarrow Y(t) $ implies that $ X(t - t_o)\Rightarrow Y(t - t_o) $ then the system is time invariant.

TIME-INVARIANT SYSTEM

$ X(t)\Rightarrow Y(t) = a*X(t) $ where $ a \in \mathbb{{C}} $ is a time invariant system.


PROOF

$ X(t)\Rightarrow Y(t) = a*X(t) \to [time delay] \to Z(t) = Y(t - t_o) = a*X(t - t_o) $


$ X(t)\to [time delay] \to Y(t) = X(t - t_o) \Rightarrow Z(t) = a*Y(t) = a*X(t - t_o) $

TIME-VARIANT SYSTEM

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison