(→TIME INVARIANCE) |
(→TIME-INVARIANT SYSTEM) |
||
Line 7: | Line 7: | ||
== TIME-INVARIANT SYSTEM == | == TIME-INVARIANT SYSTEM == | ||
+ | |||
+ | '''<math>X(t)\Rightarrow Y(t) = a*X(t)</math>''' where '''<math>a \in \mathbb{{C}}</math>''' is a time invariant system. | ||
+ | |||
+ | ---- | ||
+ | |||
+ | '''PROOF''' | ||
+ | |||
+ | '''<math>X(t)\Rightarrow Y(t) = a*X(t) \to [time delay] \to Z(t) = Y(t - t_o) = a*X(t - t_o)</math>''' | ||
+ | |||
+ | |||
+ | '''<math>X(t)\to [time delay] \to Y(t) = X(t - t_o) \Rightarrow Z(t) = a*Y(t) = a*X(t - t_o)</math>''' | ||
== TIME-VARIANT SYSTEM == | == TIME-VARIANT SYSTEM == |
Revision as of 15:41, 12 September 2008
TIME INVARIANCE
Let " $ \Rightarrow $ " represent a system.
If for any signal $ X(t)\Rightarrow Y(t) $ implies that $ X(t - t_o)\Rightarrow Y(t - t_o) $ then the system is time invariant.
TIME-INVARIANT SYSTEM
$ X(t)\Rightarrow Y(t) = a*X(t) $ where $ a \in \mathbb{{C}} $ is a time invariant system.
PROOF
$ X(t)\Rightarrow Y(t) = a*X(t) \to [time delay] \to Z(t) = Y(t - t_o) = a*X(t - t_o) $
$ X(t)\to [time delay] \to Y(t) = X(t - t_o) \Rightarrow Z(t) = a*Y(t) = a*X(t - t_o) $