(New page: ==part a== This system can not be time invariant. Pf: Delay then system yields the constant <math>(K+1+n_o)^2</math>, but the system then delay yields a constant <math>(K+1)^2</math> =...)
 
(part b)
 
Line 11: Line 11:
 
Since <math>X[n]=\delta[n]</math> yields <math>Y[n]=\delta[n-1]</math>, we can replace the unit impulses with unit steps because the system is linear,  
 
Since <math>X[n]=\delta[n]</math> yields <math>Y[n]=\delta[n-1]</math>, we can replace the unit impulses with unit steps because the system is linear,  
  
so <math>X_[n]=u[n]</math> yields <math>X[n]=u[n-1]</math>
+
so <math>X[n]=u[n]</math> yields <math>Y[n]=u[n-1]</math>

Latest revision as of 14:02, 12 September 2008

part a

This system can not be time invariant.

Pf:

Delay then system yields the constant $ (K+1+n_o)^2 $, but the system then delay yields a constant $ (K+1)^2 $

part b

Since $ X[n]=\delta[n] $ yields $ Y[n]=\delta[n-1] $, we can replace the unit impulses with unit steps because the system is linear,

so $ X[n]=u[n] $ yields $ Y[n]=u[n-1] $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett