Line 22: Line 22:
  
 
<math>y(t)</math>= 5<math>x_1</math> + 3 <math>x_2</math>
 
<math>y(t)</math>= 5<math>x_1</math> + 3 <math>x_2</math>
 +
 +
 +
The example for a linear system is
 +
 +
<math>y_1</math> = <math>t^2</math>       
 +
 +
<math>y_2</math>= <math>sin^2 t</math>

Revision as of 14:34, 12 September 2008

A system is said to be linear if it follows the following conditions

1) The response to $ x_1(t) $ + $ x_2(t) $ is $ y_1(t) $ +$ y_2(t) $.

2) The response to $ ax_1(t) $ is $ ay_1(t) $, where a is any complex constant.

Example for a linear system is

$ x_1 $ = 8$ e^t $

$ x_2 $=8$ t^2 $

Let ,

$ x_3 $ = 5$ e^t $ + 3$ t^2 $

The output is

$ y(t) $ = 8$ x_3 $

$ y(t) $=40 $ e^t $ + 24 $ t^2 $

$ y(t) $= 5$ x_1 $ + 3 $ x_2 $


The example for a linear system is

$ y_1 $ = $ t^2 $

$ y_2 $= $ sin^2 t $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett