Line 1: Line 1:
 +
==My Definition==
 +
 
A system is call linear if the system is "distributive".  
 
A system is call linear if the system is "distributive".  
  
 
system(input1+input2)=system(input1)+system(input2)
 
system(input1+input2)=system(input1)+system(input2)
  
Ex.
+
==Example of Linear System==
  
 
The system is y(t)=2x(t+3).
 
The system is y(t)=2x(t+3).
Line 20: Line 22:
  
 
y1(t)+y2(t)=2t+6+2t+4=4t+10
 
y1(t)+y2(t)=2t+6+2t+4=4t+10
 +
 +
==Example of Non-Linear System==
 +
 +
<math>y(t)=(x(t))^2</math>
 +
 +
<math>x_1(t)=t</math> yields <math>y_1(t)=t^2</math>
 +
 +
<math>x_2(t)=t-1</math> yields <math>y_2(t)=(t-1)^2=t^2-2t+1</math>
 +
 +
But,
 +
 +
<math>(x(t)=t+t-1</math> yields <math>y(t)=(t+t-1)^2=(2t-1)^2=4t^2-4t-1</math>
 +
 +
and
 +
 +
<math>y(t)=y_1(t)+y_2(t)=t^2+t^2-2t+1=2t^2-2t+1</math>
 +
 +
which are clearly not the same.

Latest revision as of 13:05, 12 September 2008

My Definition

A system is call linear if the system is "distributive".

system(input1+input2)=system(input1)+system(input2)

Example of Linear System

The system is y(t)=2x(t+3).

The output of the signal x1(t)=t is y1(t)=2(t+3)=2t+6.

The output of the signal x2(t)=t-1 is y2(t)=2(t+3-1)=2t+4.

What is the output of the signal x(t)=x1(t)+x2(t)=t+t-1?

y(t)=2(2(t+3)-1)=2(2t+5)=4t+10

This system is linear beacause

y(t)=4t+10

y1(t)+y2(t)=2t+6+2t+4=4t+10

Example of Non-Linear System

$ y(t)=(x(t))^2 $

$ x_1(t)=t $ yields $ y_1(t)=t^2 $

$ x_2(t)=t-1 $ yields $ y_2(t)=(t-1)^2=t^2-2t+1 $

But,

$ (x(t)=t+t-1 $ yields $ y(t)=(t+t-1)^2=(2t-1)^2=4t^2-4t-1 $

and

$ y(t)=y_1(t)+y_2(t)=t^2+t^2-2t+1=2t^2-2t+1 $

which are clearly not the same.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett