Line 64: | Line 64: | ||
− | '''Example Of a non-linear System''' Y[ | + | '''Example Of a non-linear System''' Y[t]=X[t]<math>^2</math> |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | now If | ||
+ | |||
+ | |||
+ | X1(t)----> '''System'''---->Y1(t) =X1[t]<math>^2</math> <math>\times</math>'''a'''---->a.X1[t]<math>^2</math> | ||
+ | |||
+ | |||
+ | Y(t)-----> '''System'''---->z2(t)<math>\times</math>'''b'''---->b.z2(t) | ||
+ | |||
+ | |||
+ | a.z1(t)+bz2(t)----->Z(t) equation 1 | ||
+ | |||
+ | |||
+ | and | ||
+ | |||
+ | |||
+ | |||
+ | X(t)<math>\times</math>'''a'''----->w1(t).a | ||
+ | |||
+ | |||
+ | |||
+ | Y(t)<math>\times</math>'''b'''----->w2(t).b | ||
+ | |||
+ | |||
+ | '''now ''' | ||
+ | w1(t).a+w2(t).b------>'''System'''----->W(t) equation 2 | ||
+ | |||
+ | |||
+ | |||
+ | IF eq 1 = eq 2 the '''system is linear'''. | ||
+ | '''a,b''' are complex numbers. |
Revision as of 12:42, 12 September 2008
now If
X(t)-----> System---->z1(t)$ \times $a---->a.z1(t)
Y(t)-----> System---->z2(t)$ \times $b---->b.z2(t)
a.z1(t)+bz2(t)----->Z(t) equation 1
and
X(t)$ \times $a----->w1(t).a
Y(t)$ \times $b----->w2(t).b
now
w1(t).a+w2(t).b------>System----->W(t) equation 2
IF eq 1 = eq 2 the system is linear.
a,b are complex numbers.
Example of a linear System. Y[n]=X[n-1].
Proof: X1[n]--->system--->Y1[n]=X1[n-1]--->a--->a.X1[n-1]
X2[n]--->system--->Y2[n]=X2[n-1]--->b--->b.X2[n-1]
Now a.X1[n-1] + b.X2[n-1]= Z(n)
And
X1[n]---->a-------->a.X1[n] X2[n]---->b-------->b.X2[n]
{a.X1[n]+b.X2[n]}----->System------>W[n-1] = a.X1[n-1] + b.X2[n-1]
As the 2 results match the System is Linear
Example Of a non-linear System Y[t]=X[t]$ ^2 $
now If
X1(t)----> System---->Y1(t) =X1[t]$ ^2 $ $ \times $a---->a.X1[t]$ ^2 $
Y(t)-----> System---->z2(t)$ \times $b---->b.z2(t)
a.z1(t)+bz2(t)----->Z(t) equation 1
and
X(t)$ \times $a----->w1(t).a
Y(t)$ \times $b----->w2(t).b
now
w1(t).a+w2(t).b------>System----->W(t) equation 2
IF eq 1 = eq 2 the system is linear.
a,b are complex numbers.