Line 52: | Line 52: | ||
− | '''{'''a.X1[n]+b.X2[n]'''}'''----->'''System'''------>W[n-1]'''='''a.X1[n-1] + b.X2[n-1] | + | '''{'''a.X1[n]+b.X2[n]'''}'''----->'''System'''------>W[n-1] '''=''' a.X1[n-1] + b.X2[n-1] |
'''As the 2 results match the System is Linear''' | '''As the 2 results match the System is Linear''' |
Revision as of 12:35, 12 September 2008
now If
X(t)-----> System---->z1(t)$ \times $a---->a.z1(t)
Y(t)-----> System---->z2(t)$ \times $b---->b.z2(t)
a.z1(t)+bz2(t)----->Z(t) equation 1
and
X(t)$ \times $a----->w1(t).a
Y(t)$ \times $b----->w2(t).b
now
w1(t).a+w2(t).b------>System----->W(t) equation 2
IF eq 1 = eq 2 the system is linear.
a,b are complex numbers.
Example of a linear System. Y[n]=X[n-1].
Proof: X1[n]--->system--->Y1[n]=X1[n-1]--->a--->a.X1[n-1]
X2[n]--->system--->Y2[n]=X2[n-1]--->b--->b.X2[n-1]
Now a.X1[n-1] + b.X2[n-1]= Z(n)
And
X1[n]---->a-------->a.X1[n] X2[n]---->b-------->b.X2[n]
{a.X1[n]+b.X2[n]}----->System------>W[n-1] = a.X1[n-1] + b.X2[n-1]
As the 2 results match the System is Linear