Line 29: Line 29:
 
IF eq 1 =  eq 2 the '''system is linear'''.
 
IF eq 1 =  eq 2 the '''system is linear'''.
 
       '''a,b''' are complex numbers.
 
       '''a,b''' are complex numbers.
 +
 +
 +
 +
'''Example of a linear System'''.  Y[n]=X[n-1].
 +
 +
 +
  Proof: X1[n]--->'''system'''--->Y1[n]=X1[n-1]--->'''a'''--->a.X1[n-1]
 +
 +
         
 +
          X2[n]--->'''system'''--->Y2[n]=X2[n-1]--->'''b'''--->b.X2[n-1]
 +
 +
 +
          Now  a.X1[n-1] +  b.X2[n-1]= Z(n)
 +
 +
 +
 +
          '''And'''
 +
 +
 +
          X1[n]---->'''a'''-------->a.X1[n]
 +
          X2[n]---->'''b'''-------->b.X2[n]
 +
 +
 +
      '''{'''a.X1[n]+b.X2[n]'''}'''----->'''System'''------>W[n-1]'''='''a.X1[n-1] +  b.X2[n-1]
 +
 +
 +
                  '''As the 2 results match the System is Linear'''

Revision as of 12:34, 12 September 2008

now If


      X(t)-----> System---->z1(t)$ \times $a---->a.z1(t)
                                                    
      Y(t)-----> System---->z2(t)$ \times $b---->b.z2(t)


                       a.z1(t)+bz2(t)----->Z(t)       equation 1


and


     X(t)$ \times $a----->w1(t).a


     Y(t)$ \times $b----->w2(t).b


now

              w1(t).a+w2(t).b------>System----->W(t)       equation 2


IF eq 1 = eq 2 the system is linear.

      a,b are complex numbers.


Example of a linear System. Y[n]=X[n-1].


  Proof: X1[n]--->system--->Y1[n]=X1[n-1]--->a--->a.X1[n-1]


         X2[n]--->system--->Y2[n]=X2[n-1]--->b--->b.X2[n-1]


         Now   a.X1[n-1] +  b.X2[n-1]= Z(n)


         And


         X1[n]---->a-------->a.X1[n]
         X2[n]---->b-------->b.X2[n]


     {a.X1[n]+b.X2[n]}----->System------>W[n-1]=a.X1[n-1] +  b.X2[n-1] 


                 As the 2 results match the System is Linear

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett