(Problem 1: Binomial Proofs)
(Problem 1: Binomial Proofs)
Line 4: Line 4:
 
== Problem 1: Binomial Proofs ==
 
== Problem 1: Binomial Proofs ==
 
Let <math>X</math> denote a binomial random variable with parameters <math>(N, p)</math>.
 
Let <math>X</math> denote a binomial random variable with parameters <math>(N, p)</math>.
 +
*(a)  Show that <math>Y = N - X</math> is a binomial random variable with parameters <math>(N,1-p)</math>
 +
*(b)  What is <math>P\{X</math> is even}? Hint: Use the [http://en.wikipedia.org/wiki/Binomial_theorem binomial theorem] to write an expression for <math>(x + y)^n + (x - y)^n</math> and then set <math>x = 1-p</math>, <math>y = p</math>.
  
 
== Problem 2: Locked Doors ==
 
== Problem 2: Locked Doors ==

Revision as of 06:58, 18 September 2008

Instructions

Homework 4 can be downloaded here on the ECE 302 course website.

Problem 1: Binomial Proofs

Let $ X $ denote a binomial random variable with parameters $ (N, p) $.

  • (a) Show that $ Y = N - X $ is a binomial random variable with parameters $ (N,1-p) $
  • (b) What is $ P\{X $ is even}? Hint: Use the binomial theorem to write an expression for $ (x + y)^n + (x - y)^n $ and then set $ x = 1-p $, $ y = p $.

Problem 2: Locked Doors

Problem 3: It Pays to Study

Problem 4: No Deal

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood