(New page: =Linearity and Time Invariance= Given system: Input Output X0[n]=δ[n] -> Y0[n]=δ[n-1] X1[n]=δ[n-1] -> Y1[n]=4δ[n-2] X2[n]=δ[n-2] -> Y2[n]=9 δ[n-3] X3[n]=δ[n-3] ...)
 
(Linearity and Time Invariance)
Line 3: Line 3:
 
Input       Output
 
Input       Output
 
X0[n]=δ[n]   ->  Y0[n]=δ[n-1]
 
X0[n]=δ[n]   ->  Y0[n]=δ[n-1]
 +
 
X1[n]=δ[n-1]   ->  Y1[n]=4δ[n-2]
 
X1[n]=δ[n-1]   ->  Y1[n]=4δ[n-2]
 +
 
X2[n]=δ[n-2]   ->  Y2[n]=9 δ[n-3]
 
X2[n]=δ[n-2]   ->  Y2[n]=9 δ[n-3]
 +
 
X3[n]=δ[n-3]   ->  Y3[n]=16 δ[n-4]
 
X3[n]=δ[n-3]   ->  Y3[n]=16 δ[n-4]
 +
 
...       ...
 
...       ...
 +
 
Xk[n]=δ[n-k]   ->  Yk[n]=(k+1)2 δ[n-(k+1)]   ->  For any non-negative integer k
 
Xk[n]=δ[n-k]   ->  Yk[n]=(k+1)2 δ[n-(k+1)]   ->  For any non-negative integer k

Revision as of 09:46, 12 September 2008

Linearity and Time Invariance

Given system: Input Output X0[n]=δ[n] -> Y0[n]=δ[n-1]

X1[n]=δ[n-1] -> Y1[n]=4δ[n-2]

X2[n]=δ[n-2] -> Y2[n]=9 δ[n-3]

X3[n]=δ[n-3] -> Y3[n]=16 δ[n-4]

... ...

Xk[n]=δ[n-k] -> Yk[n]=(k+1)2 δ[n-(k+1)] -> For any non-negative integer k

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva