(New page: =Linear Systems= A linear system is defined as a system that if two inputs were placed in parallel into a system and then summed yields the same result as adding two inputs together and th...)
 
Line 22: Line 22:
 
<math>x(t) + w(t) -> SYSTEM -> y(t)+z(t) \ </math>
 
<math>x(t) + w(t) -> SYSTEM -> y(t)+z(t) \ </math>
  
If <math>x(t) = t \ </math> and <math>w(t) = t^2 \ </math>, and the SYSTEM multiplies any input <math>x(t) \ </math> and multiplies it by 2 and any input <math>w(t) \ </math> and multiplies by 3, then the result <math>y(t)+z(t) \ </math> would equal <math>2*x(t)+3*w(t) \ </math> for both parallel, system-passed and then summed as well as summed then system-passed methods.
+
If <math>x(t) = t \ </math> and <math>w(t) = t^2 \ </math>, and the SYSTEM multiplies any input multiplies by 3, then the result <math>y(t)+z(t) \ </math> would equal <math>3x(t)+3w(t) \ </math> for both parallel, system-passed and then summed as well as summed then system-passed methods.
  
 
=Example of Nonlinear System=
 
=Example of Nonlinear System=

Revision as of 08:54, 12 September 2008

Linear Systems

A linear system is defined as a system that if two inputs were placed in parallel into a system and then summed yields the same result as adding two inputs together and then placed into that system.

In another form, it may be translated as:

Parallel: A -> SYSTEM -> C B -> SYSTEM -> D

where the resulting sum is C+D.

Sum: A+B -> SYSTEM -> C+D.

Example of Linear System

$ x(t) -> SYSTEM -> y(t) \ $

$ w(t) -> SYSTEM -> z(t) \ $

with sum equaling $ y(t)+z(t) \ $

$ x(t) + w(t) -> SYSTEM -> y(t)+z(t) \ $

If $ x(t) = t \ $ and $ w(t) = t^2 \ $, and the SYSTEM multiplies any input multiplies by 3, then the result $ y(t)+z(t) \ $ would equal $ 3x(t)+3w(t) \ $ for both parallel, system-passed and then summed as well as summed then system-passed methods.

Example of Nonlinear System

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn