Line 7: Line 7:
  
 
One-Way
 
One-Way
<math>
+
 
 
x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++
 
x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++
 
                             =  a*cos(t)+b*sin(t) = z(t)
 
                             =  a*cos(t)+b*sin(t) = z(t)
 
x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++
 
x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++
</math>
+
 
  
 
Reverse-Way
 
Reverse-Way
<math>
+
 
 
cos(t) = x1(t)*a +++
 
cos(t) = x1(t)*a +++
 
             =  a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)
 
             =  a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)
 
sin(t) = x2(t)*b +++
 
sin(t) = x2(t)*b +++
</math>
+
 
  
 
since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.
 
since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.
Line 26: Line 26:
 
One-way
 
One-way
  
<math>
+
 
 
y[n] = 2*x[n]^3
 
y[n] = 2*x[n]^3
  
Line 32: Line 32:
 
                                   = a*2*x1[n]^3+2*b*x2[n]^3
 
                                   = a*2*x1[n]^3+2*b*x2[n]^3
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++
</math>
+
 
  
 
Reverse-way
 
Reverse-way
  
<math>
+
 
 
x1[n] -> (X)*a +++
 
x1[n] -> (X)*a +++
 
               = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3
 
               = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3
 
x2[n] -> (X)*b +++
 
x2[n] -> (X)*b +++
</math>
+
 
  
 
However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3
 
However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3
 
the system is not linear because the two inflexive operations are not equal to each other.
 
the system is not linear because the two inflexive operations are not equal to each other.

Latest revision as of 11:21, 12 September 2008

Linearity

So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).


Example: Linear

One-Way

x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++

                            =   a*cos(t)+b*sin(t) = z(t)

x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++


Reverse-Way

cos(t) = x1(t)*a +++

            =   a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)

sin(t) = x2(t)*b +++


since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.

Example: Non-Linear

One-way


y[n] = 2*x[n]^3

x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++

                                 = a*2*x1[n]^3+2*b*x2[n]^3

x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++


Reverse-way


x1[n] -> (X)*a +++

             = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3

x2[n] -> (X)*b +++


However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3 the system is not linear because the two inflexive operations are not equal to each other.

Alumni Liaison

EISL lab graduate

Mu Qiao