(→Problem 4) |
|||
Line 1: | Line 1: | ||
==Problem 4== | ==Problem 4== | ||
− | A | + | A linear is system is a system that given two valid inputs: |
− | + | :<math>x_1(t) </math> | |
− | + | :<math>x_2(t) </math> | |
− | :<math>x_1(t) | + | with respective outputs: |
− | :<math>x_2(t) | + | :<math>y_1(t) = H { x_1(t) } </math> |
− | + | :<math>y_2(t) = H { x_2(t) } </math> | |
− | :<math>y_1(t) = H | + | will satisfy the equation |
− | :<math>y_2(t) = H | + | :<math>\alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } </math> |
− | + | for any <math>\alpha </math> and <math>\beta </math>. | |
− | :<math>\alpha y_1(t) + \beta y_2(t) = H | + | |
− | for any | + | |
− | + |
Revision as of 06:26, 12 September 2008
Problem 4
A linear is system is a system that given two valid inputs:
- $ x_1(t) $
- $ x_2(t) $
with respective outputs:
- $ y_1(t) = H { x_1(t) } $
- $ y_2(t) = H { x_2(t) } $
will satisfy the equation
- $ \alpha y_1(t) + \beta y_2(t) = H { \alpha x_1(t) + \beta x_2(t) } $
for any $ \alpha $ and $ \beta $.