(New page: to be edited)
 
Line 1: Line 1:
to be edited
+
==Problem 4==
 +
A general deterministic system can be described by operator <math>H</math> that maps an input <math>x(t)</math> as a function of <math>t</math> to an output <math>y(t)</math>.
 +
 
 +
Given two valid inputs
 +
:<math>x_1(t) \,</math>
 +
:<math>x_2(t) \,</math>
 +
as well as their respective outputs
 +
:<math>y_1(t) = H \left \{ x_1(t) \right \} </math>
 +
:<math>y_2(t) = H \left \{ x_2(t) \right \} </math>
 +
then a linear system must satisfy
 +
:<math>\alpha y_1(t) + \beta y_2(t) = H \left \{ \alpha x_1(t) + \beta x_2(t) \right \} </math>
 +
for any [[scalar (mathematics)_ECE301Fall2008mboutin|scalar]] values <math>\alpha \,</math> and <math>\beta \,</math>.
 +
<!-- Insert picture dipicting the superposition and scaling properties -->

Revision as of 06:19, 12 September 2008

Problem 4

A general deterministic system can be described by operator $ H $ that maps an input $ x(t) $ as a function of $ t $ to an output $ y(t) $.

Given two valid inputs

$ x_1(t) \, $
$ x_2(t) \, $

as well as their respective outputs

$ y_1(t) = H \left \{ x_1(t) \right \} $
$ y_2(t) = H \left \{ x_2(t) \right \} $

then a linear system must satisfy

$ \alpha y_1(t) + \beta y_2(t) = H \left \{ \alpha x_1(t) + \beta x_2(t) \right \} $

for any scalar values $ \alpha \, $ and $ \beta \, $.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva