(→Definition of Time Invariance) |
|||
Line 1: | Line 1: | ||
== Definition of Time Invariance == | == Definition of Time Invariance == | ||
− | + | A system <math>\,s(t)\,</math> is called time invariant if for any input signal <math>\,x(t)\,</math> yielding output signal <math>\,y(t)\,</math> and for any <math>\,t_o\in\mathbb{R}\,</math>, the response to <math>\,x(t-t_o)\,</math> is <math>\,y(t-t_o)\,</math>. | |
== Example of a Time Invariant System == | == Example of a Time Invariant System == |
Revision as of 18:20, 11 September 2008
Definition of Time Invariance
A system $ \,s(t)\, $ is called time invariant if for any input signal $ \,x(t)\, $ yielding output signal $ \,y(t)\, $ and for any $ \,t_o\in\mathbb{R}\, $, the response to $ \,x(t-t_o)\, $ is $ \,y(t-t_o)\, $.
Example of a Time Invariant System
ROFL
Example of a Time Variant System
LAWL