Line 4: Line 4:
 
<math> Y_{k}[n] = (k+1)^2 d[n-(k+1)] </math><br><br>
 
<math> Y_{k}[n] = (k+1)^2 d[n-(k+1)] </math><br><br>
 
Shifting <math> X_{k}[n] </math> by a constant "a" yields <math> X_{k}[n-a] </math><br><br>
 
Shifting <math> X_{k}[n] </math> by a constant "a" yields <math> X_{k}[n-a] </math><br><br>
 +
Shifting <math> Y_{k}[n] </math> by a constant "a" yields <math> Y_{k}[n-a] </math><br><br>
 +
<math> X_{k}[n-a] = d[n-k-a] </math><br><br>
 +
<math> Y_{k}[n-a] = (k+1)^2 d[n-(k+1)-a] </math><br><br>

Revision as of 15:16, 11 September 2008

Part (a)

No. This system is not time-invariant. The general equation of the system is as follows.

$ X_{k}[n] = d[n-k] $

$ Y_{k}[n] = (k+1)^2 d[n-(k+1)] $

Shifting $ X_{k}[n] $ by a constant "a" yields $ X_{k}[n-a] $

Shifting $ Y_{k}[n] $ by a constant "a" yields $ Y_{k}[n-a] $

$ X_{k}[n-a] = d[n-k-a] $

$ Y_{k}[n-a] = (k+1)^2 d[n-(k+1)-a] $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch